Shivam Thukral

117-520 Eleventh Street New Westminster, BC - V3M 5W9

EDUCATION _____

Master of Science in Computer Science	September 2019 – February 2022
University of British Columbia (UBC), Vancouver, Canada	GPA: 88.8 / 100
Thesis: Real-time Perception of Potential Docking Locations for Smart Wheelchairs (Slides, Thesis)	
Bachelor of Technology in Computer Science and Engineering	August 2013 –August 2017
Indraprastha Institute of Information Technology (IIIT), Delhi, India	GPA: 9.4 / 10.0
Thesis: Resolving Message Logic Dependencies in Robotic Systems (Poster)	

SKILLS _____

Languages: C/C++, Python, Julia, CUDA, MATLAB, Java, Bash, SQL, R, Haskell.

Technologies: Robotics Operating System (ROS), PyTorch, PCL, Open3d, OpenCV, Tensorflow, OMPL, Git **Tools:** PyCharm, CLion, Atom, VSCode, Eclipse, Qt-Creator, Andriod SDK, Soot, Google Test.

Platform: Linux, Windows, Universal Robots, Android

INDUSTRY EXPERIENCE _

Software Engineer - Robotics and Perception, Locus Robotics

Standard Camera Calibration

- Substituted per camera calibration with a standard calibration matrix for all cameras mounted on the robot.
 Ensured the new calibration errors to be within 1% of the use-case specific tolerance limits.
- Reduced the robot deployment time by 6% by alleviating the need to perform per camera calibration for each robot.

AprilTag Detection

- Upgraded the fiducial marker detector to use AprilTag3 to increase frame processing speed (22%) and recall (28%).
- Replaced image undistortion with RoI rectification for tag detectors to decrease NUC load by $\sim 5\%$.
- Integrated Locus's fiducial markers with state-of-the art deep-learning tag detector (DeepTag).

Material Handling Equipment (MHE) Detection (In progress)

- Utilized AprilTags for detection and localizing of forklifts to reduce robot collisions in warehouse settings.
- **Researcher (Software Engineer)**, TATA Consultancy Services Innovation Labs

Long Distance Container (LDC) Packing - Palletizer (Video)

- Designed new industrial level system to automatically load heterogeneous sized parcels in LDC's.
- Developed pose estimation and motion planning for placing parcels in LDC's using Universal Robots.
- Increased system throughput by directly publishing poses and joints to the robot by surpassing ROS-MoveIt.
- Successfully achieved target filling rate of 12 seconds per LDC.

Amazon Robotic Challenge (Video)

- Built robot hardware and software that can attempt the task of picking and stowing items on shelves.
- Replicated this system in a lab environment that was designed in-house by TCS Robotics.
- Worked on complete pipeline including object recognition, pose recognition, grasp planning, and motion planning.

Chitrakar: Robot Artist (Video, Paper)

- Programmed a robotic arm to draw a human face as a recognizable non-self-intersecting loop (jordan curve).
- Designed automated image processing pipeline and motion planning module to complete the drawing within 30 minutes.
- This work demonstrates use of robotics to augment humans in executing difficult craft-work instead of replacing them.

Calibration: Robot and Camera

- Developed a package for autonomous calibration of stereo camera with Universal Robots.
- Added testing support feature to verify the generated robot to camera transformation matrix.
- Dropped calibration time from 20 to 9 minutes, and resource requirement from 2 to a 1 person.

ACADEMIC EXPERIENCE _

Graduate Research Assistant, UBC Vancouver

- May 2020 February 2022
- Developed vision-based algorithm, ApproachFinder-CV, to find docking locations for a wheelchair in indoor scenes.
 Each location is accompanied by a desirability weight based on visibility, relative position and heading.
- Proposed a real-time deep network, ApproachFinder-NN, that predicts docking spots using just geometric information.
 - Our end-to-end differentiable Hough voting based architecture is 15x faster than computer vision pipeline.
- Evaluated the performance of ApproachFinder-NN on a large state-of-the-art indoor dataset (SUNRGB-D).
- Proposed a way to integrate network output as 3D temporal desirability cost map for wheelchair navigation.

April 2022 – Present

August 2017 - August 2019

• Used Model Predictive Controller with efficiently designed task-driven cost functions to share human intent.

Graduate Teaching Assistant, UBC Vancouver

- Advanced Relation Databases × 4
- Introduction to Relation Databases $\times \ 1$
 - Designed and graded questions for homework assignments, quizzes and examinations.
 - Conducted weekly office hours and attended classes in 2019 to assist students during in-class doubts.
 - Assisted instructor to have a smooth transition from offline to online classes during Covid-19.

Undergraduate Research Assistant, IIIT Delhi

- Developed an optimal path planning algorithm (BugFlood) in an obstacle rich environment.
- Bugflood delivers lower cost paths compared to other planners with lower computational time.
 - It is 11x and 18x times faster than BFMT* and FMT* respectively.
 - It generates paths that are only 5% sub-optimal than the Visibility Graphs (the most optimal path planner).
- Bugflood rapidly indicates if a path does not exist.
 - Planner can detect a no path scenario in 0.4 seconds.

SELECTED PROJECTS

PyTorch Vision Tutorials (Code) (In progress)

- Multiple tutorials covering how to implement vision-focused deep learning architectures in PyTorch with torchvision.
- Networks Covered: a basic MLP, LeNet, AlexNet, STN, VGG, ResNet and other networks.

Image-based Visual Servoing using Industrial Manipulator (Report, Code)

- Proposed a framework to track moving visual features with occlusion using a 6-DoF robotic arm in 3D.
- Features are tracked using CAMShift and Kalman filter is used to predict target's motion in cases of occlusion.
- End-effector velocity is estimated from feature jacobian and it is used to generate joint velocities from robot jacobian.
- Dexterous manipulation capability is shown by using the robot to play ping-pong at a ball speed of 15 cm/s.

Verifying Deep Neural Networks (Report, Code)

- Literature Survey: summarized 10 research papers on state-of-the-art approaches to verify deep neural networks.
- Used ReLUplex, an SMT solver for verifying deep neural networks, to verify properties of:
 - A prototype DNN for airborne collision avoidance system for unmanned aircraft (ACAS Xu).
 - A simplified network trained on MNIST Digit Recognition dataset
- Extended ReLUplex to run on piece-wise linear max-pooling functions with no significant delay.

Modelling Human Behaviour in Chess (Report, Code)

- Developed a predictive model of human chess moves through supervised learning.
 - Predicting human moves is a multi-class classification problem, but with a different set of classes for each position.
- Trained three models: linear, neural net and transformer model, on Lichess dataset.
- Transformer based model performed best with an accuracy of 76.4% on top-5 accuracy.

3D Pose Estimation from Single RGB Camera (Report, Code)

- Developed a method to estimate 3D kinematic pose of human using a RGB camera video stream at 15 Hz.
- Fully-connected CNN's yields 2D and 3D joint positions simultaneously and eliminates expensive BB computation.
- Real-time model based kinematic fitting is used against 2D/3D predictions to produce joint positions of 3D skeleton.

SCHOLARSHIPS AND ACHIEVEMENTS _

- Received International Tuition Award to assist my tuition fees for my graduate program (Amount: 8000\$).
- Received St John's College Sir Quo-Wei Lee Fellowship for Summer Session 2021 (Amount: 2000\$).
- Received Graduate Covid Program Delay Tuition Award to support my academic and research progress (Amount: 1900\$).
- Graduate Teaching Assistant Award for earning outstanding scores and feedback from students on teaching evaluations.
- Chancellor's Gold Medal for best academic record amongst the entire B.Tech program.
- Acknowledged in Dean's Merit List for excellent academic performance amid computer science undergraduates.

PUBLICATIONS, WORKSHOPS AND PATENTS .

N. Sharma, <u>S. Thukral</u>, S. Aine, and P.B. Sujit, "A virtual bug planning technique for 2D robot path planning," in *IEEE American Control Conference*, ACC, Milwaukee, June 2018.

A. Singhal, A. Kumar, <u>S. Thukral</u>, D. Raina, S. Kumar, "Chitrakar: Robotic System for Drawing Jordan Curve of Facial Portrait," Workshop on Creativity and Robotics, *International Conference on Social Robotics*, ICSR, November 2020.

A. Singhal, H. Kahdilkar, V. Raju, D. Raina, V.S. Prasad, <u>S. Thukral</u>, R. Sinha, "System and method for autonomous multi-bin parcel loading system", U.S. Patent Application No. 17/167,999.

Winter 2019, Winter 2020, Winter 2021 Summer 2020

Summer 2020

Winter 2016